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Abstract

Three-particle correlations have been measured for identified π− from central 158 A GeV
Pb+Pb collisions by the WA98 experiment at CERN. A substantial contribution of the gen-
uine three-body correlation has been found as expected for a mainly chaotic and symmetric
source.

In nuclear and particle physics, the study of Bose-Einstein correlations between identical
particles is widely used. It is an essential tool to obtain information on the size and time
evolution of expanding systems created in heavy ion collisions [1]. In particular, two-particle
Bose-Einstein interferometry has been used for a sophisticated analysis of the dynamical
evolution of the freeze out volume via selection on the transverse momentum and rapidity of
the correlated particles.

Three-particle interferometry measurements can provide additional information on the
space-time emission which is not accessible by two-particle interferometry[2, 3, 4, 5]. In
particular, if the emission is fully chaotic, the three-particle interference study gives access
to the phase of the source function’s Fourier transform, which is affected by the emission
asymmetry. These asymmetries may be induced by source geometry, flow or resonance
decays. If the source is not completely chaotic, as is likely to be the case, the interpretation
is more difficult. Nevertheless, a comparison of the three-particle to the two-particle result
allows to extract the relative strength of the true three-body correlation and can in principle
remove obscuring effects, such as background from misidentified tracks or long-lived decay
products, and therefore provide information more directly about the degree of coherence of
the emission source[4]. In this letter we present first results from three-particle interferometry
in central 208Pb+208Pb collisions at the CERN SPS.

The fixed target experiment WA98 [6] combined large acceptance photon detectors with a
two arm charged particle tracking spectrometer. The incident 158 A GeV Pb beam impinged
on a Pb target near the entrance of a large dipole magnet. The results presented here have
been obtained from an analysis of the 1995 data set. These data were taken with the most
central triggers corresponding to about 10% of the minimum bias cross section of 6190 mb.
The π− measurements were obtained with data from the negative particle tracking arm of the
spectrometer. This tracking arm consisted of six multistep avalanche chambers with optical
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readout [7]. A time of flight detector with a time resolution better than 120 ps allowed for
particle identification. The rapidity acceptance ranged from y = 2.1 to 3.1 with an average at
2.7, close to mid-rapidity which was 2.9. The momentum resolution of the spectrometer was
∆p/p = 0.005 at p = 1.5 GeV/c. Severe track quality cuts were applied, resulting in a final
sample of 4.2×106 π−, providing 7.2×106 pairs and 8.2×106 triplets. The π−π− correlation
analysis has been reported elsewhere [8].

The most common use of hadron interferometry concerns the study of pairs of identical
particles. The two-particle correlation function can be defined as

C2(p1,p2) =
d2N(p1,p2)/dp1dp2

dN(p1)/dp1 · dN(p2)/dp2

where p1 and p2 are the 3–momenta of the correlated particles. The product of single
particle distributions in the denominator is usually obtained experimentally by a mixed
event technique whereas the pair distribution in the numerator is constructed from all pair
combinations of identical particles found in each event. C2 is normalized to unity far away
from the interference region. In the plane wave approximation for chaotic sources of identical
particles C2 can be written as [9]

C2(p1,p2) = 1 ± |F12|2 (1)

with the + (-) sign for bosons (fermions). F12 is the Fourier transform of the space-time
source function S(x, k12)

|F12|2 =
| ∫ d4x S(x, k12) exp[iq12x]|2

| ∫ d4x S(x, k12)|2 (2)

with q12 = p1 − p2, the 4–momentum difference of the two particles, and k12 = (p1 + p2)/2.
F12 is unity as q12 → 0. Thus the production of identical bosons is enhanced for pairs created
close together in phase space with a small momentum difference Q12 ≡

√
−q2

12.
Typically ππ correlation data are fit with a Gaussian form for |F12|2

C2 = 1 + λ exp[−Q2
12R

2] (3)

or an exponential form
C2 = 1 + λ exp[−2Q12R] (4)

where the parameter λ is inserted to take into account the possibility that the source may
not be fully chaotic and also that any wrongly reconstructed tracks, or tracks coming from
decays of long-lived resonances, will dilute the correlations in the data.

The measurement of C2 gives access to the radius R of the source, but not to the phase
φ12 contained in F12 ≡ |F12| exp[iφ12] since C2 is only a function of the square of the Fourier
transform of the source distribution S. By contrast, the three-boson interference produced
by a fully chaotic source is sensitive to the phase information of the Fourier transform of the
source emission function. Indeed, for a chaotic source the three-body correlation function
C3, which is

C3(p1,p2,p3) =
d3N(p1,p2,p3)/dp1dp2dp3

dN(p1)/dp1 · dN(p2)/dp2 · dN(p3)/dp3
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can be written [2, 3, 4, 5] as

C3 = 1 + |F12|2 + |F23|2 + |F31|2 + 2 ·Re{F12 · F23 · F31} (5)

where Fij is the Fourier transform for the pair ij contained in the triplet 123. The genuine
three-body correlation in C3 is the term 2 ·Re{F12 · F23 · F31}.

With Fij ≡ |Fij | exp[iφij ] and W ≡ cos(φ12 + φ23 + φ31) one may rewrite

2 ·Re{F12 · F23 · F31} = 2 · |F12| · |F23| · |F31| ·W. (6)

Having determined |Fij | from the pair correlation function C2, the measurement of C3 gives
direct access to W , the cosine of the sum of the three phases of the Fourier transforms, and
hence provides complementary information on the shape of the source. Indeed, W is related
to the odd space-time moments of the source which generate the phases φij [4]. For example,
if the source is fully chaotic and symmetric, Fij are real, φ12 = φ23 = φ31 = 0, and W is
equal to 1. C3 is then fully determined by C2, and the genuine three-particle correlation is
maximum. If the source is not fully chaotic, more complicated expressions should be used,
mixing the effects of fully chaotic and coherent sources [4]. Nevertheless, Eq. 6 is valid in
general with W interpreted as a factor expressing the relative strength of the true three-body
correlation compared to that expected for a fully symmetric chaotic source. Consequently,
measuring W values less than 1 does not allow to differentiate between asymmetries or
coherence in the source.

Assuming a Gaussian form of the source function, which for two bosons leads to a corre-
lation function described by Eq. 3, one obtains

C3 = 1 + λ
∑

ij=12,23,31

exp[−Q2
ijR

2] + 2λ3/2 exp[−Q2
3R

2/2] ·W (7)

with Q2
3 ≡ Q2

12 + Q2
23 + Q2

31. If the exponential form of the Fourier transform is assumed
instead (Eq. 4), one obtains

C3 = 1 + λ
∑

ij=12,23,31

exp[−2QijR] + 2λ3/2 exp[−(Q12 + Q23 + Q31)R] ·W (8)

Inserting the values of λ and R obtained from the two-particle analysis into Eqs. 7 or 8, one
can extract the three-particle strength information W .

The one-dimensional correlation function C2, analyzed in terms of Q12, is shown in Fig. 1.
The two-track resolution of the spectrometer (2 cm) is dealt with by application of a prox-
imity cut to each track pair. The data are corrected for the Coulomb and stong final state
interactions in an iterative way [10], taking into account the source size obtained in the fit.
The Gamow correction was abandoned as we found that it overcorrects the data for Q12 in
the range of 0.1 to 0.3 GeV/c. The effect of the experimental resolution, which is estimated
by a full Monte-Carlo, can be approximated in the interference region by a Gaussian of con-
stant σ of 7 MeV/c both for Q12 and Q3. It is taken into account by replacing the function
C2(Q12) used to fit the non-corrected data by

Crc
2 (Q12) =

∫
r(Q12, Q

′
12) C2(Q′

12) dQ′
12,
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which is the convolution of C2(Q12) with the resolution function r(Q12, Q
′
12) of the spec-

trometer. For display purposes, Fig. 1 is obtained by multiplying each data point by
Crc

2 (Q12)/C2(Q12). Fitting the corrected data with C2 gives the same results as fitting
the non-corrected data with Crc

2 . The correlation function C2 is seen to be non-Gaussian.
Instead, it is better represented by an exponential form[8]. For the C3 analysis, an accurate
description of the shape of C2 is essential since the estimate of the W factor extracted from C3

depends on it. The exponential fit (Eq. 4) yielding R = 7.29±0.11 fm and λ = 0.753±0.013
is shown in Fig. 1.

Fig. 2 shows the three-pion correlation as a function of Q3, after correction for resolution.
A very strong π−π−π− correlation is observed, which is robust under all tracking criteria.
The result shown is obtained for the same sample and the same cuts applied on the three
pair combinations contained in each triplet as used for the two-pion interference analysis.
For the C3 result, the Coulomb correction applied to a particular triplet is the product of
the Coulomb corrections used for the three pair combinations contained in that triplet. The
resolution is taken into account using the same procedure as in the two-pion analysis. The
resolution has a tiny effect compared to the Coulomb correction and it has been checked that
the results are not affected by the order in which these corrections are applied to the data.
The dashed line is a fit to a double exponential function

C3 = 1 + λ1 exp[−2Q3R1] + λ2 exp[−2Q3R2] (9)

with fitted parameters R1 = 5.01 ± 0.38 fm, λ1 = 2.79 ± 0.32, R2 = 1.72 ± 0.12 fm, λ2 =
0.343± 0.072 and χ2/d.o.f. = 0.88. The three-pion correlation data cannot be well fitted by
a Gaussian or a single exponential as a function of Q3. Such non-Gaussian behaviour has
been predicted by a final-state rescattering model [11].

In Fig. 2, the three-pion correlation data are compared to an estimate using Eq. 8 with
W = 1 (upper line) and W = 0 (lower line). This estimate is made using triplets from mixed
events with the λ and R parameters extracted from the two-pion interferometry analysis.
Although the calculated contribution to C3 from the genuine three-pion correlation is rather
small and becomes insignificant for Q3 > 60 − 80 MeV/c, the experimental results clearly
indicate a W factor which lies between 0 and 1.

As proposed in Refs. [4, 12], a method to extract the experimental value of W as a
function of Q3 is to invert Eqs. 5 and 6 and rewrite |Fij | in terms of C2 using Eq. 1 to obtain

W =
{C3(Q3)− 1} − {C2(Q12) − 1} − {C2(Q23) − 1} − {C2(Q31)− 1}

2 · √{C2(Q12)− 1}{C2(Q23) − 1}{C2(Q31) − 1} (10)

In this method, the analysis must be performed in two steps. First, the λ and R parameters
are determined both for the two-pion and three-pion correlations with a fit to the data of
Eqs. 4 and 9 as previously explained. Then the data are analyzed again, and, for each triplet
found, characterized by the value Q3, W is determined using Eqs. 4, 9, and 10 with the
values Q12, Q23, and Q31 corresponding to the three pair combinations contained in the
triplet. For each bin in Q3 containing N triplets, the statistical error on the mean value 〈W 〉
is σ/

√
N , where σ2 is the variance of the W distribution in this particular bin. The estimate

of systematic errors is done by varying the different analysis cuts in the two and three-pion
interference studies. It includes in particular the cuts used to identify the pions with the time
of flight system. The systematic error on the Coulomb correction due to the error on the
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determination of the R parameter in the two-pion fit, as well as a possible 10% systematic
error on the evaluation of the Q12 and Q3 resolution are also taken into account. The effects
on W of the statistical errors in the determination of C2 and C3 are treated as systematic
errors by changing C2 and C3 respectively by ±σC2 and ±σC3. All of these variations are
then added in quadrature.

Fig. 3 shows the W values obtained for five bins of 10 MeV/c in Q3. The error bars
are the sum of statistical and systematic errors. The statistical errors (not shown separately
in Fig. 3) are nearly negligible. The slight Q3 dependence observed is not significant in
view of the errors. The genuine three-body correlation is substantial with a weighted mean
〈W 〉 = 0.606 ± 0.005 ± 0.179 for Q3 < 60 MeV/c. 1 This result should be compared to the
lower π+π+π+ result of 〈W 〉 = 0.20 ± 0.02 ± 0.19 observed by the NA44 collaboration [12]
in S+Pb minimum bias collisions at 200 GeV per nucleon.

In conclusion, we have studied the π−π−π− interference of pions produced in central
Pb+Pb collisions at 158 GeV per nucleon. Although its contribution is small, the genuine
three-pion correlation, the portion of the correlation not trivially due to the two-pion inter-
ference, has been extracted and found to be substantial. The genuine three-pion correlation
is greater than reported for S+Pb minimum bias collisions [12], but not as large as expected
for a fully chaotic and symmetric source.
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Figure 1: The measured π−π− correlation function C2 (full symbols) fit with an exponential (solid
curve) or Gaussian form (dashed curve) corrected for resolution. The empty symbols show the
data before Coulomb and resolution corrections. Only statistical errors are shown.
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Figure 2: The three-pion correlation function C3 as a function of Q3 with a fit to a double
exponential form (dashed line–see text). The result is also compared to an estimate of C3 with
W = 1 (upper solid line) and W = 0 (lower solid line). The inset shows C3 over a larger Q3 range.
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Figure 3: The factor W as a function of Q3. The error bars include statistical and systematic
errors. The statistical errors alone (not shown) are contained within the size of the symbols except
for the first bin where it amounts to twice the size of the symbol. The horizontal bars indicate
the bin width.
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